Título : | Calculus I : cálculo con funciones de una variable, con una introducción al Álgebra Lineal | Tipo de documento: | texto impreso | Autores: | Tom M. Apostol, Autor | Mención de edición: | 1a. ed | Editorial: | Barcelona : Reverté | Fecha de publicación: | 2011 | Número de páginas: | 811 p. | Dimensiones: | 21,5 cm | ISBN/ISSN/DL: | 978-84-291-5002-5 | Idioma : | Español (spa) | Clasificación: | ÁLGEBRA ANÁLISIS MATEMÁTICO GEOMETRIA MATEMÁTICA
| Resumen: | Parece que no hay acuerdo sobre lo que ha de construir un primer curso de Cálculo y Geometría Analítica. Unos sostienen que el camino verdadero para entender el Cálculo principia con un estudio completo del sistema de los números reales desarrollándolo paso a paso de manera lógica y rigurosa. Otros insisten en que el Cálculo es ante todo un instrumento para los ingenieros y físicos; y por consiguiente, que un curso debe llevar a las aplicaciones del Cálculo apelando a la intuición, para después, por el ejercicio en la resolución de problemas, alcanzar destreza operatorio. En ambos puntos de vista hay mucha parte de razón. El Cálculo es una ciencia deductiva y una rama de la Matemática pura. Al mismo tiempo es muy importante recordar que el Cálculo tiene profundas raíces en problemas físicos y que gran parte de su potencia y belleza deriva de la variedad de sus aplicaciones. Mas es posible combinar un desarrollo teórico riguroso con una sana formación técnica, y este libro representa un intento de establecer un sensible equilibrio entre las dos tendencias. Aunque se trate el Cálculo como ciencia deductiva, no por eso se abandonan las aplicaciones a problemas físicos. Las demostraciones de todos los teoremas importantes se consideran como una parte esencial en el desarrollo de las ideas matemáticas, y con frecuencia van precedidas de una discusión geométrica o intuitiva para dar el estudiante una visión más penetrante del porqué de la demostración. Aunque estas discusiones intuitivas pueden ser suficientes para el lector que no esté interesado en los detalles de la demostración, también se incluye la demostración completa para aquellos que prefieran una exposición más rigurosa.
La disposición de este libro ha sido sugerida por el desarrollo histórico y filosófico del Cálculo y la Geometría Analítica. Por ejemplo, se estudia la integración antes de la diferenciación. Aunque esta manera de ordenar la materia del curso sea poco frecuente, es históricamente correcta y pedagógicamente adecuada. Además, es el mejor camino para hacer patente la verdadera conexión entre la derivada y la integral. |
Calculus I : cálculo con funciones de una variable, con una introducción al Álgebra Lineal [texto impreso] / Tom M. Apostol, Autor . - 1a. ed . - Barcelona (Loreto 13-15) : Reverté, 2011 . - 811 p. ; 21,5 cm. ISBN : 978-84-291-5002-5 Idioma : Español ( spa) Clasificación: | ÁLGEBRA ANÁLISIS MATEMÁTICO GEOMETRIA MATEMÁTICA
| Resumen: | Parece que no hay acuerdo sobre lo que ha de construir un primer curso de Cálculo y Geometría Analítica. Unos sostienen que el camino verdadero para entender el Cálculo principia con un estudio completo del sistema de los números reales desarrollándolo paso a paso de manera lógica y rigurosa. Otros insisten en que el Cálculo es ante todo un instrumento para los ingenieros y físicos; y por consiguiente, que un curso debe llevar a las aplicaciones del Cálculo apelando a la intuición, para después, por el ejercicio en la resolución de problemas, alcanzar destreza operatorio. En ambos puntos de vista hay mucha parte de razón. El Cálculo es una ciencia deductiva y una rama de la Matemática pura. Al mismo tiempo es muy importante recordar que el Cálculo tiene profundas raíces en problemas físicos y que gran parte de su potencia y belleza deriva de la variedad de sus aplicaciones. Mas es posible combinar un desarrollo teórico riguroso con una sana formación técnica, y este libro representa un intento de establecer un sensible equilibrio entre las dos tendencias. Aunque se trate el Cálculo como ciencia deductiva, no por eso se abandonan las aplicaciones a problemas físicos. Las demostraciones de todos los teoremas importantes se consideran como una parte esencial en el desarrollo de las ideas matemáticas, y con frecuencia van precedidas de una discusión geométrica o intuitiva para dar el estudiante una visión más penetrante del porqué de la demostración. Aunque estas discusiones intuitivas pueden ser suficientes para el lector que no esté interesado en los detalles de la demostración, también se incluye la demostración completa para aquellos que prefieran una exposición más rigurosa.
La disposición de este libro ha sido sugerida por el desarrollo histórico y filosófico del Cálculo y la Geometría Analítica. Por ejemplo, se estudia la integración antes de la diferenciación. Aunque esta manera de ordenar la materia del curso sea poco frecuente, es históricamente correcta y pedagógicamente adecuada. Además, es el mejor camino para hacer patente la verdadera conexión entre la derivada y la integral. |
|